In one of my favorite non-survey articles, Rossi and colleagues looked at the relative value of purchase history data and demographic information in predicting the impact of coupons with different values. The purchase history data was more valuable in the prediction. I believe a similar situations applies to surveys, at least in some settings. That is, paradata might be more valuable than sampling frame data. Of course, many of the surveys that I work on have very weak data on the sampling frame. In any event, I fit random intercept logistic regression models predicting contact that include some sampling frame data from an RDD survey. The sampling frame data are generally neighborhood characteristics. I recently made this chart, which shows the predicted vs observed contact rates for households in a particular time slot (call window). The dark circles are the predictions by observed values (household contact rates) for the multi-level model. I also fit a marginal logistic regressio...
Blogging about survey methods, responsive design, and all things survey related.