A recent article by Brick and Tourangeau re-examines the data from a paper by Groves and Peytcheva (2008). The original analyses from Groves and Peytcheva were based upon 959 estimates with known variables measured on 59 surveys with varying response rates. They found very little correlation between the response rate and the bias on those 959 estimates. Brick and Tourangeau view the problem as a multi-level problem of 59 clusters (i.e. surveys) of the 959 estimates. They created for each survey a composite score based on all the bias estimates from each survey. Their results were somewhat sensitive to how the composite score was created. They do present several different ways of doing this -- simple mean, mean weighted by sample size, mean weighted by the number of estimates. Each of these study-level composite bias scores is more correlated with the response rate. They conclude: "This strongly suggests that nonresponse bias is partly a function of study-level characteristics; ...
Blogging about survey methods, responsive design, and all things survey related.