Skip to main content

What is Data Quality, and How to Enhance it in Research

 



We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them.

Over the last two years, we have been developing a course on Total Data Quality, soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data.

The figure shows the classification scheme as we have modified it to include both survey data and organic forms of data, also known as big data or found data. We find that all forms of data are subject to these same sorts of errors in varying degrees.

We won’t define all the classes in this post – just two examples.

Data Origin

First, on the measurement side, we look at “Data Origin” as how were the individual values / data points for a given variable (or field) recorded, captured, labeled, gathered, computed, or represented? This could be the process of answering a question, filling a field in an administrative record, or labeling an image in a machine learning context. In the case of labeling images, this could be a human being incorrectly labeling an image. For example, a human being might not note the difference between a cat or a kitten. In some contexts, that difference could be important.

Missing Data

On the representation side, “Missing Data” is a common problem that impacts many types of data. For example, administrative records can be missing key variables or even entire records. Similar things can happen with surveys. These missing data can impact inferences or predictions if the missing values differ from the observed values in important ways.

Using this classification scheme as a way to think about errors can help guide researchers as they consider quality issues. Further, being aware of these issues may also open the door to enhancing the quality along these dimensions! If you’d like to learn more, our new open online courses series focuses on identifying, measuring, and maximizing quality along all of these dimensions.

This blog post is also published here.




Comments

  1. Your discussion on data quality is spot on! Survey Data Analysis is crucial in improving data integrity and reducing error margins in future research. Thanks for sharing!

    ReplyDelete

Post a Comment

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...