Skip to main content

Presenting Results: Adaptive Design for Telephone Surveys

I'll be presenting results from the adaptive call scheduling experiment on Monday, November 2nd at the FCSM Research Conference. The results were promising, at least for the calls governed by the experimental protocol. The following table summarizes the results:


The next step is to extend the experimental protocol to the calls that were not involved with the experiment (mainly refusal conversion calls), and to attempt this with a face-to-face survey.

Comments

  1. Did the experimental scheduling lead to more call attempts (as I doubt you can force the call scheduler to keep the cases from the two conditions to be delivered proportionally)? It would be interesting to see the number of interviews too and the actual prediction & implementation, but I won't be at FCSM... Very interesting, James.

    ReplyDelete
  2. We had the scheduler deliver cases from the control and experimental group in an interwoven fashion. It would take 5 cases from each group and put them at the top of the sort, repeating this procedure until the entire sample was sorted.

    Of course, the protocol only applies to cases that don't have an appointment, weren't a return call on a busy signal, etc.

    We did run into a situation where we finished the experimental group, but the control group required more effort. So things got "out of whack" at the end of the field period.

    ReplyDelete

Post a Comment

Popular posts from this blog

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic forms of d

An Experimental Adaptive Contact Strategy

I'm running an experiment on contact methods in a telephone survey. I'm going to present the results of the experiment at the FCSM conference in November. Here's the basic idea. Multi-level models are fit daily with the household being a grouping factor. The models provide household-specific estimates of the probability of contact for each of four call windows. The predictor variables in this model are the geographic context variables available for an RDD sample. Let $\mathbf{X_{ij}}$ denote a $k_j \times 1$ vector of demographic variables for the $i^{th}$ person and $j^{th}$ call. The data records are calls. There may be zero, one, or multiple calls to household in each window. The outcome variable is an indicator for whether contact was achieved on the call. This contact indicator is denoted $R_{ijl}$ for the $i^{th}$ person on the $j^{th}$ call to the $l^{th}$ window. Then for each of the four call windows denoted $l$, a separate model is fit where each household is assu