Skip to main content

Interviewer Variance in Face-to-Face Surveys

There have been several important studies of interviewer variance in face-to-face surveys. O'Muircheartaigh and Campanelli (1998) report on a study that used an interpenetrated design to evaluate the impact of interviewers on variance estimates.

There are also studies that show interviewers vary in their ability to establish contact (Campanelli et al., Can you hear me knocking? 1999) and elicit response (Durrant, Groves, Staetsky, Steele, 2010).

Although O'Muricheartaigh and Campanelli  account for the clustering of the sample design, they don't account for differences in response (due to contact or refusal). It may be that variation in response rates or the composition of response may explain some (certainly not all) of the interviewer variation.

If that is the case, then attempting to control interviewer recruitment protocols (like call timing) might help reduce interviewer variance.


Popular posts from this blog

"Responsive Design" and "Adaptive Design"

My dissertation was entitled "Adaptive Survey Design to Reduce Nonresponse Bias." I had been working for several years on "responsive designs" before that. As I was preparing my dissertation, I really saw "adaptive" design as a subset of responsive design.

Since then, I've seen both terms used in different places. As both terms are relatively new, there is likely to be confusion about the meanings. I thought I might offer my understanding of the terms, for what it's worth.

The term "responsive design" was developed by Groves and Heeringa (2006). They coined the term, so I think their definition is the one that should be used. They defined "responsive design" in the following way:

1. Preidentify a set of design features that affect cost and error tradeoffs.
2. Identify indicators for these costs and errors. Monitor these during data collection.
3. Alter the design features based on pre-identified decision rules based on the indi…

The Cost of a Call Attempt

We recently did an experiment with incentives on a face-to-face survey. As one aspect of the evaluation of the experiment, we looked at the costs associated with each treatment (i.e. different incentive amounts).

The costs are a bit complicated to parse out. The incentive amount is easy, but the interviewer time is hard. Interviewers record their time for at the day level, not at the housing unit level. So it's difficult to determine how much a call attempt costs.

Even if we had accurate data on the time spent making the call attempt, there would still be all the travel time from the interviewer's home to the area segment. If I could accurately calculate that, how would I spread it across the cost of call attempts? This might not matter if all I'm interested in is calculating the marginal cost of adding an attempt to a visit to an area segment. But if I want to evaluate a treatment -- like the incentive experiment -- I need to account for all the interviewer costs, as best…

Goodhart's Law

I enjoy listening to the data skeptic podcast. It's a data science view of statistics, machine learning, etc. They recently discussed Goodhart's Law on the podcast. Goodhart's was an economist. The law that bears his name says that "when a measure becomes a target, then it ceases to be a good measure." People try and find a way to "game" the situation. They maximize the indicator but produce poor quality on other dimensions as a consequence. The classic example is a rat reduction program implemented by a government. They want to motivate the population to destroy rats, so they offer a fee for each rat that is killed. Rather than turn in the rat's body, they just ask for the tail. As a result, some persons decide to breed rats and cut off their tails. The end result... more rats.

I have some mixed feelings about this issue. There are many optimization procedures that require some single measure which can be either maximized or minimized. I think thes…