Skip to main content

Adaptive Design and Refusal Conversions

For me, the idea of adaptive design was influenced by work from the field of clinical trials on multi-stage treatments. Susan Murphy introduced me to adaptive treatment regimes as an approach to the problem. She points to methods developed in the field of reinforcement learning as useful approaches to problems of sequential decisionmaking.

Reinforcement learning describes some policies (i.e. a set of decision rules for a set of sequential decisions) as myopic. A policy is myopic if it only looks at the rewards available at the next step. I'm reading Decision Theory by John Bather right now. He uses an example similar to the following to demonstrate this issue. The following is a simple game. The goal is to get from the yellow square to the green square with the lowest cost. The number in each square is the cost of moving there.Diagonal moves are not allowed.


The myopic policy looks only at the next option and goes down a path that ends up with only expensive options to reach the target. The myopic policy is shown in the following picture:

The total cost is 7. The optimal policy looks for the sequence with the lowest cost (since the reward function in this game is to find the lowest cost path). The optimal policy starts out with a a more expensive move, but ends up overall less costly:


I find myself in a similar situation with the telephone experiment that I've been running. It is more efficient in the first step (before refusal conversions). But it is less efficient for refusal conversions. So much so that the overall efficiency is the same for the experimental and control groups.

On the other hand, maybe I can locate a policy for refusal conversions that will be better than either the current experimental or control methods. Even if I'm not able to find such a solution, I still think this is an interesting problem.

Comments

Popular posts from this blog

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic forms of d

An Experimental Adaptive Contact Strategy

I'm running an experiment on contact methods in a telephone survey. I'm going to present the results of the experiment at the FCSM conference in November. Here's the basic idea. Multi-level models are fit daily with the household being a grouping factor. The models provide household-specific estimates of the probability of contact for each of four call windows. The predictor variables in this model are the geographic context variables available for an RDD sample. Let $\mathbf{X_{ij}}$ denote a $k_j \times 1$ vector of demographic variables for the $i^{th}$ person and $j^{th}$ call. The data records are calls. There may be zero, one, or multiple calls to household in each window. The outcome variable is an indicator for whether contact was achieved on the call. This contact indicator is denoted $R_{ijl}$ for the $i^{th}$ person on the $j^{th}$ call to the $l^{th}$ window. Then for each of the four call windows denoted $l$, a separate model is fit where each household is assu