Skip to main content

Adaptive Design and Refusal Conversions

For me, the idea of adaptive design was influenced by work from the field of clinical trials on multi-stage treatments. Susan Murphy introduced me to adaptive treatment regimes as an approach to the problem. She points to methods developed in the field of reinforcement learning as useful approaches to problems of sequential decisionmaking.

Reinforcement learning describes some policies (i.e. a set of decision rules for a set of sequential decisions) as myopic. A policy is myopic if it only looks at the rewards available at the next step. I'm reading Decision Theory by John Bather right now. He uses an example similar to the following to demonstrate this issue. The following is a simple game. The goal is to get from the yellow square to the green square with the lowest cost. The number in each square is the cost of moving there.Diagonal moves are not allowed.


The myopic policy looks only at the next option and goes down a path that ends up with only expensive options to reach the target. The myopic policy is shown in the following picture:

The total cost is 7. The optimal policy looks for the sequence with the lowest cost (since the reward function in this game is to find the lowest cost path). The optimal policy starts out with a a more expensive move, but ends up overall less costly:


I find myself in a similar situation with the telephone experiment that I've been running. It is more efficient in the first step (before refusal conversions). But it is less efficient for refusal conversions. So much so that the overall efficiency is the same for the experimental and control groups.

On the other hand, maybe I can locate a policy for refusal conversions that will be better than either the current experimental or control methods. Even if I'm not able to find such a solution, I still think this is an interesting problem.

Comments

Popular posts from this blog

Balancing Response through Reduced Response Rates

A case can be made that balanced response -- that is, achieving similar response rates across all the subgroups that can be defined using sampling frame and paradata -- will improve the quality of survey data. A paper that I was co-author on used simulation with real survey data to show that actions that improved the balance of response usually led to reduced bias in adjusted estimates. I believe the case is an empirical one. We need more studies to speak more generally about how and when this might be true.

On the other hand, I worry that studies that seek balance by reducing response rates (for high-responding groups) might create some issues. I see two types of problems. First, low response rates are generally easier to achieve. It takes skills and effort to achieve high response rates. The ability to obtain high response rates, like any muscle, might be lost if it is not used. Second, if these studies justify the lower response rate by saying that estimates are not significantly c…

Goodhart's Law

I enjoy listening to the data skeptic podcast. It's a data science view of statistics, machine learning, etc. They recently discussed Goodhart's Law on the podcast. Goodhart's was an economist. The law that bears his name says that "when a measure becomes a target, then it ceases to be a good measure." People try and find a way to "game" the situation. They maximize the indicator but produce poor quality on other dimensions as a consequence. The classic example is a rat reduction program implemented by a government. They want to motivate the population to destroy rats, so they offer a fee for each rat that is killed. Rather than turn in the rat's body, they just ask for the tail. As a result, some persons decide to breed rats and cut off their tails. The end result... more rats.

I have some mixed feelings about this issue. There are many optimization procedures that require some single measure which can be either maximized or minimized. I think thes…

Training for Paradata

Paradata are messy data. I've been working with paradata for a number of years, and find that there are all kinds of issues. The data aren't always designed with the analyst in mind. They are usually a by-product of a process. The interviewers aren't focused (and rightly so) on generating high-quality paradata. In many situations, they sacrifice the quality of the paradata in order to obtain an interview.

The good thing about paradata is that analysis of paradata is usually done in order to inform specific decisions. How should we design the next survey? What is the problem with this survey? The analysis is effective if the decisions seem correct in retrospect. That is, if the predictions generated by the analysis lead to good decisions.


If students were interested in learning about paradata analysis, then I would suggest that they gain exposure to methods in statistics, machine learning, operations research, and an emerging category "data science." It seems like…