Skip to main content

Responsive Design and Information

It seems odd to say, but "Responsive Design" has now been around for a while. Groves and Heeringa published their paper in 2006. The concept has probably been stretched in all directions at this point.

I find it helpful to back to the original problem statement: we design surveys as if we know the results of each design decision. For example, we know what the response rate will be given a certain design (mode, incentive, etc. -- the "essential conditions"). How would we act if we had no idea about the results? We would certainly expend some resources to gain some information.

Responsive design is built upon this idea. Fortunately, in most situations, we have some idea about what the results might be, at least within a certain range. We experiment within this range of design options in order to approach an optimal design. We expend resources relatively inefficiently in order to learn something that will improve the design of later phases.

I've seen people working in the area of Machine Learning addressing a similar problem. They have to address this question of the value of exploring design options ("policies," in their terminology). What is the value of exploring policies (i.e. gaining information) relative to maximizing the reward under known policies (using all your resources for the design that is assumed to be best)? It might be useful to approach responsive design from this perspective.

Comments

Popular posts from this blog

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

"Responsive Design" and "Adaptive Design"

My dissertation was entitled "Adaptive Survey Design to Reduce Nonresponse Bias." I had been working for several years on "responsive designs" before that. As I was preparing my dissertation, I really saw "adaptive" design as a subset of responsive design. Since then, I've seen both terms used in different places. As both terms are relatively new, there is likely to be confusion about the meanings. I thought I might offer my understanding of the terms, for what it's worth. The term "responsive design" was developed by Groves and Heeringa (2006) . They coined the term, so I think their definition is the one that should be used. They defined "responsive design" in the following way: 1. Preidentify a set of design features that affect cost and error tradeoffs. 2. Identify indicators for these costs and errors. Monitor these during data collection. 3. Alter the design features based on pre-identified decision rules based on ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...