Skip to main content

Lowering response rates may be a slippery slope

I have read a couple of recent studies that compared early to late responders and concluded that late responders did not add anything to estimates.

I have a couple of concerns. The first concern is with this approach. A simulation of this sort may not lead to the same results if you actually implement the truncated design. If interviewers know they are aiming for a lower response rate, then they may recruit differently. So, at a lower response rate, you may end up with a different set of respondents than this type of simulation would indicate.

My second concern is that it is always easy to conclude that a lower response rate yields the same result. But you could imagine a long series of these steps edging up to lower and lower response rates. None of the steps changes estimates, but cumulatively they might.

I have this feeling that we might need to look at studies like this in a new way. Not as an indication that it is OK to lower response rates, but as a challenge to redesign what we are doing to test that hypothesis. For instance, you might subsample cases to receive the "unproductive" effort rather than completely truncate it. More than that, you might use this as evidence that "phase capacity" has been reached and try something else.

This all comes down to, when have we done due diligence to address the nonresponse challenge?


Popular posts from this blog

"Responsive Design" and "Adaptive Design"

My dissertation was entitled "Adaptive Survey Design to Reduce Nonresponse Bias." I had been working for several years on "responsive designs" before that. As I was preparing my dissertation, I really saw "adaptive" design as a subset of responsive design.

Since then, I've seen both terms used in different places. As both terms are relatively new, there is likely to be confusion about the meanings. I thought I might offer my understanding of the terms, for what it's worth.

The term "responsive design" was developed by Groves and Heeringa (2006). They coined the term, so I think their definition is the one that should be used. They defined "responsive design" in the following way:

1. Preidentify a set of design features that affect cost and error tradeoffs.
2. Identify indicators for these costs and errors. Monitor these during data collection.
3. Alter the design features based on pre-identified decision rules based on the indi…

Future of Responsive and Adaptive Design

A special issue of the Journal of Official Statistics on responsive and adaptive design recently appeared. I was an associate editor for the issue and helped draft an editorial that raised issues for future research in this area. The last chapter of our book on Adaptive Survey Design also defines a set of questions that may be of issue.

I think one of the more important areas of research is to identify targeted design strategies. This differs from current procedures that often sequence the same protocol across all cases. For example, everyone gets web, then those who haven't responded to  web get mail. The targeted approach, on the other hand, would find a subgroup amenable to web and another amenable to mail.

This is a difficult task as most design features have been explored with respect to the entire population, but we know less about subgroups. Further, we often have very little information with which to define these groups. We may not even have basic household or person chara…

An Experimental Adaptive Contact Strategy

I'm running an experiment on contact methods in a telephone survey. I'm going to present the results of the experiment at the FCSM conference in November. Here's the basic idea.

Multi-level models are fit daily with the household being a grouping factor. The models provide household-specific estimates of the probability of contact for each of four call windows. The predictor variables in this model are the geographic context variables available for an RDD sample.

Let $\mathbf{X_{ij}}$ denote a $k_j \times 1$ vector of demographic variables for the $i^{th}$ person and $j^{th}$ call. The data records are calls. There may be zero, one, or multiple calls to household in each window. The outcome variable is an indicator for whether contact was achieved on the call. This contact indicator is denoted $R_{ijl}$ for the $i^{th}$ person on the $j^{th}$ call to the $l^{th}$ window. Then for each of the four call windows denoted $l$, a separate model is fit where each household is assum…