Skip to main content

Adaptive Interventions

I was at a very interesting workshop today on adaptive interventions. Most of the folks at the workshop design interventions for chronic conditions and would be used to testing their interventions using a randomized trial.

Much of the discussion was on heterogeneity of treatment effects. In fact, much of their research is based on the premise that individualized treatments should do better than giving everyone the same treatment. Of course, the average treatment might be the best course for everyone, but they have certainly found applications where this is not true. It seems that many more could be found.

I started to think about applications in the survey realm. We do have the concept of tailoring, which began in our field with research into survey introductions. But do we use it much? I have two feelings on this question. No, there aren't many examples like the article I linked to above. We usually test interventions (design features like incentives, letters, etc.) on the whole sample. We may note that they work differentially across subgroups, but we rarely design interventions for specific subgroups.

My other feeling is that, yes, we do some of this. For example, we only apply refusal conversions to cases that have refused. We just need to think about all of the things that we do and maybe 'relabel' them.

The other thought that I had was that it would be difficult for us to design completely individualized treatments like I saw them doing today. We don't get the same kind of detailed feedback that they get. But still, I think we can move toward more differentiated treatment strategies.

Comments

Popular posts from this blog

The Cost of a Call Attempt

We recently did an experiment with incentives on a face-to-face survey. As one aspect of the evaluation of the experiment, we looked at the costs associated with each treatment (i.e. different incentive amounts).

The costs are a bit complicated to parse out. The incentive amount is easy, but the interviewer time is hard. Interviewers record their time for at the day level, not at the housing unit level. So it's difficult to determine how much a call attempt costs.

Even if we had accurate data on the time spent making the call attempt, there would still be all the travel time from the interviewer's home to the area segment. If I could accurately calculate that, how would I spread it across the cost of call attempts? This might not matter if all I'm interested in is calculating the marginal cost of adding an attempt to a visit to an area segment. But if I want to evaluate a treatment -- like the incentive experiment -- I need to account for all the interviewer costs, as best…

Goodhart's Law

I enjoy listening to the data skeptic podcast. It's a data science view of statistics, machine learning, etc. They recently discussed Goodhart's Law on the podcast. Goodhart's was an economist. The law that bears his name says that "when a measure becomes a target, then it ceases to be a good measure." People try and find a way to "game" the situation. They maximize the indicator but produce poor quality on other dimensions as a consequence. The classic example is a rat reduction program implemented by a government. They want to motivate the population to destroy rats, so they offer a fee for each rat that is killed. Rather than turn in the rat's body, they just ask for the tail. As a result, some persons decide to breed rats and cut off their tails. The end result... more rats.

I have some mixed feelings about this issue. There are many optimization procedures that require some single measure which can be either maximized or minimized. I think thes…

Training for Paradata

Paradata are messy data. I've been working with paradata for a number of years, and find that there are all kinds of issues. The data aren't always designed with the analyst in mind. They are usually a by-product of a process. The interviewers aren't focused (and rightly so) on generating high-quality paradata. In many situations, they sacrifice the quality of the paradata in order to obtain an interview.

The good thing about paradata is that analysis of paradata is usually done in order to inform specific decisions. How should we design the next survey? What is the problem with this survey? The analysis is effective if the decisions seem correct in retrospect. That is, if the predictions generated by the analysis lead to good decisions.


If students were interested in learning about paradata analysis, then I would suggest that they gain exposure to methods in statistics, machine learning, operations research, and an emerging category "data science." It seems like…