Skip to main content

Proxy Y's

My last post was a bit of crankiness about the term "nonresponse bias." There is a bit of terminology, on the other hand, that I do like -- "Proxy Y's." We used this term in a paper a while ago.

The thing that I like about this term, is that it puts the focus on the prediction of Y. Based on the paper by Little and Vartivarian (2005), this seemed like a more useful thing to have. And we spent time looking for things that could fit the bill.

If we have something like this, the difference between responders and the full sample might be a good proxy for bias with the actual Y's. I'm not backtracking here -- it's still not "nonresponse bias" in my book. It's just a proxy for it.

The paper we wrote found that good proxy Y's are hard to find. Still, it's worth looking. And, as I said, the term keeps us focused on finding these elusive measures. 

Comments

  1. I also like the way Andridge and Little (2011) defines proxy variable as way to reduce dimensionality using the prediction of the outcome variable based on a set of auxiliary variables. There I think it's even more explicit the focus on the prediction of Y that you mention.

    ReplyDelete
    Replies
    1. I was thinking mainly of paradata design. That is, designing auxiliary variables that can function as proxy Y's. These are likely to be interviewer observations. But could be other paradata elements.

      Delete
    2. I see, variables such as presence of children at home in NSFG, right? I believe that's a very interesting way to go too. I have suggested that in a survey and they even implemented that, but we didn't use that for anything at the end. They thought that the interviewers observations were not very good, when compared to respondent data. In that sense, I believe we also need more research like what Brady West has been doing in evaluating measurement error in these kind of paradata.

      Delete
  2. Your this blog giving us information about subjected topic. Thanks for doing this
    FileCrop UK proxy

    ReplyDelete

Post a Comment

Popular posts from this blog

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic forms of d

An Experimental Adaptive Contact Strategy

I'm running an experiment on contact methods in a telephone survey. I'm going to present the results of the experiment at the FCSM conference in November. Here's the basic idea. Multi-level models are fit daily with the household being a grouping factor. The models provide household-specific estimates of the probability of contact for each of four call windows. The predictor variables in this model are the geographic context variables available for an RDD sample. Let $\mathbf{X_{ij}}$ denote a $k_j \times 1$ vector of demographic variables for the $i^{th}$ person and $j^{th}$ call. The data records are calls. There may be zero, one, or multiple calls to household in each window. The outcome variable is an indicator for whether contact was achieved on the call. This contact indicator is denoted $R_{ijl}$ for the $i^{th}$ person on the $j^{th}$ call to the $l^{th}$ window. Then for each of the four call windows denoted $l$, a separate model is fit where each household is assu