Skip to main content

Adaptive Design and Panel Surveys

I read this very interesting blog post by Peter Lugtig yesterday. The slides from the talk he describes are also linked to the post. He builds on an analysis of classes of nonresponders. Several distinct patterns of nonresponse are identified. The characteristics of persons in each class are then described. For example, some drop out early, some "lurk" around the survey, some stay more or less permanently.

He suggests that it might be smart to identify design features that are effective for each of the groups and then tailor these features to the subgroups in an adaptive design. This makes a lot of sense. And panel studies are an attractive place to start doing this kind of work. In the panel setting, there is a lot more data available on cases. This can help in identifying subgroups. And, with repeated trials of the protocol, it may be possible to improve outcomes (response) over time.

I think the hard part is creating the groups. This reminds me of a problem that I read about years ago in determining a policy for catalog mailings. The groupings need to be homogenous with respect to the impact of the feature we intend to use. For example, if we decide to mail an off-wave newsletter, we want that feature to improve the probability of response for everyone in the group and not anyone outside the group. Or as nearly so as possible.

We have the additional problem that we also want the ones we recruit to help us improve the quality of estimates. Of course, they reduce sampling error. It would be nice if they might also reduce the bias of adjusted estimates. It's a bit harder to judge when that happens.

Comments

Popular posts from this blog

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

"Responsive Design" and "Adaptive Design"

My dissertation was entitled "Adaptive Survey Design to Reduce Nonresponse Bias." I had been working for several years on "responsive designs" before that. As I was preparing my dissertation, I really saw "adaptive" design as a subset of responsive design. Since then, I've seen both terms used in different places. As both terms are relatively new, there is likely to be confusion about the meanings. I thought I might offer my understanding of the terms, for what it's worth. The term "responsive design" was developed by Groves and Heeringa (2006) . They coined the term, so I think their definition is the one that should be used. They defined "responsive design" in the following way: 1. Preidentify a set of design features that affect cost and error tradeoffs. 2. Identify indicators for these costs and errors. Monitor these during data collection. 3. Alter the design features based on pre-identified decision rules based on ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...