Skip to main content

Responsive Design and Quota Sampling

I conducted a webinar on responsive design this week. I had several interesting questions. One of these was a question about responsive design and quota sampling.  The question was whether these two approaches are, in fact, different?

Of course, there are similarities in that the response process is being controlled -- somewhat -- by the researchers. And this may lead to "allocating" nonresponse to some groups over others. For example, if some group is responding at higher rates, we might allocate resources to the lower responding group. Quota sampling will stop data collection for groups that have reached their quota.

There are differences, however. Responsive design attempts to provide balanced response, but doesn't necessarily force that to happen. Further, responsive design is attempting to control the data collection process using a variety of approaches. Quota sampling only has one approach -- stop when the quota is full. 

I do worry that there may be a convergence, where responsive design become quota sampling. To me, the most interesting problems are actually re-allocating resources to improve the balance of respondents while maintaining or increasing response rates. Decreasing response rates in order to improve balance seems too easy. There are some examples where this can be shown to be helpful. I think we need more evidence to be convinced of this.


  1. There is quite an investment when it comes to spending money for the services rendered by professional designing firms. After having thoroughly checked and selecting a logo design service you could contact them and get more details about their working methods and mode of payment, etc. how to design a questionnaire


Post a Comment

Popular posts from this blog

"Responsive Design" and "Adaptive Design"

My dissertation was entitled "Adaptive Survey Design to Reduce Nonresponse Bias." I had been working for several years on "responsive designs" before that. As I was preparing my dissertation, I really saw "adaptive" design as a subset of responsive design.

Since then, I've seen both terms used in different places. As both terms are relatively new, there is likely to be confusion about the meanings. I thought I might offer my understanding of the terms, for what it's worth.

The term "responsive design" was developed by Groves and Heeringa (2006). They coined the term, so I think their definition is the one that should be used. They defined "responsive design" in the following way:

1. Preidentify a set of design features that affect cost and error tradeoffs.
2. Identify indicators for these costs and errors. Monitor these during data collection.
3. Alter the design features based on pre-identified decision rules based on the indi…

Future of Responsive and Adaptive Design

A special issue of the Journal of Official Statistics on responsive and adaptive design recently appeared. I was an associate editor for the issue and helped draft an editorial that raised issues for future research in this area. The last chapter of our book on Adaptive Survey Design also defines a set of questions that may be of issue.

I think one of the more important areas of research is to identify targeted design strategies. This differs from current procedures that often sequence the same protocol across all cases. For example, everyone gets web, then those who haven't responded to  web get mail. The targeted approach, on the other hand, would find a subgroup amenable to web and another amenable to mail.

This is a difficult task as most design features have been explored with respect to the entire population, but we know less about subgroups. Further, we often have very little information with which to define these groups. We may not even have basic household or person chara…

An Experimental Adaptive Contact Strategy

I'm running an experiment on contact methods in a telephone survey. I'm going to present the results of the experiment at the FCSM conference in November. Here's the basic idea.

Multi-level models are fit daily with the household being a grouping factor. The models provide household-specific estimates of the probability of contact for each of four call windows. The predictor variables in this model are the geographic context variables available for an RDD sample.

Let $\mathbf{X_{ij}}$ denote a $k_j \times 1$ vector of demographic variables for the $i^{th}$ person and $j^{th}$ call. The data records are calls. There may be zero, one, or multiple calls to household in each window. The outcome variable is an indicator for whether contact was achieved on the call. This contact indicator is denoted $R_{ijl}$ for the $i^{th}$ person on the $j^{th}$ call to the $l^{th}$ window. Then for each of the four call windows denoted $l$, a separate model is fit where each household is assum…