Skip to main content

"Call Scheduling Algorithms" = Call Scheduling Algoritms + Staffing

We think about call scheduling algorithms as a set of rules about when cases should be called. However, staffing is the other half of the problem. For the rules to be implemented, the staff making the calls need to be there. And, there can also be issues if the staff is too large. The rules need to account for both of these situations.

Probably the more difficult problem is a staff that is too large. For example, imagine that all active cases have been called. There is an appointment in 45 minutes. The interviewer can wait, or call cases that have already been called on this shift. Calling cases again would be inefficient and a violation of a rule of the algorithm. Still, it seems bad to not make he calls.

I wrote a paper on a call scheduling algorithm. I assigned a preferred calling window to each case. These windows changed over time as calls were placed and the results of previous calls were used to inform the assignment of preferred window. I spent a lot of time analyzing data to see how often calls were placed in the preferred window.

This issue comes up in the paper by Greenberg and Stokes. Their algorithm recommended placing 30% of the calls on the first night of the study. This is likely infeasible as a scheduling problem.

In any event, call scheduling is a complicated problem. The complications, I think, stem in part from the difficulty of implementing staffing that will match the rules of the calling. And extending results across organizations with different approaches to staffing is difficult. In evaluating these algorithms, we need to know the rules, the violations of the rules, and the results.

Comments

Popular posts from this blog

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic forms of d

An Experimental Adaptive Contact Strategy

I'm running an experiment on contact methods in a telephone survey. I'm going to present the results of the experiment at the FCSM conference in November. Here's the basic idea. Multi-level models are fit daily with the household being a grouping factor. The models provide household-specific estimates of the probability of contact for each of four call windows. The predictor variables in this model are the geographic context variables available for an RDD sample. Let $\mathbf{X_{ij}}$ denote a $k_j \times 1$ vector of demographic variables for the $i^{th}$ person and $j^{th}$ call. The data records are calls. There may be zero, one, or multiple calls to household in each window. The outcome variable is an indicator for whether contact was achieved on the call. This contact indicator is denoted $R_{ijl}$ for the $i^{th}$ person on the $j^{th}$ call to the $l^{th}$ window. Then for each of the four call windows denoted $l$, a separate model is fit where each household is assu