Skip to main content

Surveys and Other Sources of Data

Linking surveys and other sources of data is not a new idea. This has been around for a long time. It's useful in many situations. For example, when respondents would have a difficult time supplying the information (for example, exact income information).

Much of the previous research on linkage has focused on either the ability to link data, possibly in a probabilistic fashion; or there have been examinations of biases associated with the willingness to consent to linkage.

It seems that new questions are emerging with the pervasiveness of data generated by devices, especially smart phones. I read an interesting article by Melanie Revilla and colleagues about trying to collect data from a tracking application that people install on their devices. They examine how the "meter" as they call the application might be incompletely covering the sample. For example, persons might have multiple devices and only install it on some of them. Or, persons might share devices and not install them on those shared devices. The application collects URLs. The authors found that these were difficult to analyze. For example, it's difficult to know if the person was shopping without more complicated decomposition of the URL.

These new data are presenting new challenges. Working through them will take time and effort. These challenges may also require that we develop new skills. Still, it is an interesting time to be working on surveys.

Comments

  1. This comment has been removed by the author.

    ReplyDelete
  2. Thanks for sharing information about the surveys and other sources. There are many online survey panels in India .

    ReplyDelete

Post a Comment

Popular posts from this blog

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic forms of d

An Experimental Adaptive Contact Strategy

I'm running an experiment on contact methods in a telephone survey. I'm going to present the results of the experiment at the FCSM conference in November. Here's the basic idea. Multi-level models are fit daily with the household being a grouping factor. The models provide household-specific estimates of the probability of contact for each of four call windows. The predictor variables in this model are the geographic context variables available for an RDD sample. Let $\mathbf{X_{ij}}$ denote a $k_j \times 1$ vector of demographic variables for the $i^{th}$ person and $j^{th}$ call. The data records are calls. There may be zero, one, or multiple calls to household in each window. The outcome variable is an indicator for whether contact was achieved on the call. This contact indicator is denoted $R_{ijl}$ for the $i^{th}$ person on the $j^{th}$ call to the $l^{th}$ window. Then for each of the four call windows denoted $l$, a separate model is fit where each household is assu