Skip to main content

Adaptive and Responsive Design

I've raised this topic a couple of times here. Several years ago, Groves and Heeringa (2006) proposed an approach to survey data collection that they called "Responsive Design." The design was rolled out in phases with information from prior phases being used to tailor the design in later phases.

In my dissertation, I wrote about "Adaptive Survey Design." For me, the main point of using the term "adaptive" was to link to the research on adaptive treatment regimes, especially as proposed by Susan Murphy and her colleagues.

I hadn't thought much about the relationship between the two. At the time, I saw what I was doing as a subset of responsive designs.

Since then, Barry Schouten and Melania Calinescu at Statistics Netherlands have defined "adaptive static" and "adaptive dynamic" designs. Adaptive static designs tailor the protocol to information on the sampling frame. For example, determining the mode of contact for each case by its characteristics on the frame, like age. Adaptive dynamic designs tailor the design to incoming paradata. A refusal conversion protocol might be a commonly used example. Changing incentives based on paradata might be another example. The "adaptive dynamic" designs seem to come closest to the kind of designs I envisioned when writing my dissertation.

Over the summer, Mick Couper and I gave a talk on responsive designs. We included some definitional discussion. It was Mick's idea to describe these designs along a continuum. The dimension of the continuum involves how much tailoring there is. On one end, single protocol surveys apply the same protocol to every case. On the other end of the spectrum, adaptive treatment regimes provide individually-tailored protocols. Here's a graphic:


The definitions of these various terms may still be fluid. The important thing is that folks who are working on similar things be able to communicate and build upon each others results.

Comments

  1. Thank you for posting such a useful, impressive and looking good!

    ReplyDelete
  2. Thanks for the post, it's really interesting and helpful :)

    ReplyDelete

Post a Comment

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...