Skip to main content

Fractional Factorial Experiments and Surveys

I'm reading and greatly enjoyed Statistics for Experimenters. The book emphasizes careful thinking about experimentation in addition to careful explanation of statistical methods.

One of the main topics is the use of fractional factorial designs. In these designs, some of the experimental conditions are confounded with higher order interactions (the latter are assumed to be negligible). These designs can be more efficient when the assumptions are correct. And fitting these designs into a sequence of experiments can make them very powerful.

This has me thinking about how we often conduct experiments on surveys. We often vary a single factor and then report the results with a slim description of the other "essential survey conditions" -- i.e. other factors which are not explored. These other conditions are potential confounders in these experimental designs.

If more of these essential conditions were reported, it might help make sense of experimental results that are sometimes contradictory -- that is, if a confounding design factor can be identified. It may point the way for further experiments that test these potential confounders. In this manner, our knowledge about survey design factors could increase.

Comments

  1. James, it's been a while since I've seen this phrase! I was helping a professor design a fractional factorial experiment years back so I have some interesting references if you ever need them. Mostly Taguchi Method, which is what he was using.

    I like your general comment about the differences between survey methodology research (and our treatment of essential survey conditions...out "protocol and stimuli" to use lab lingo) and experimental lab research. Having done both the distinction resonates well with me.

    Even in the lab-based social sciences you can find "house effects"...situations where one lab can get a particular experimental effect and another can't, even if it seems like they're doing the same thing.

    ReplyDelete

Post a Comment

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...