One of the issues with looking at average contact rates (like with the heat map from a few posts ago) is that it's only helpful for average cases. In fact, some cases are easy to contact no matter what strategy you use, other cases are easy to contact when you try a reasonable strategy (i.e. calling during a window with an average high contact rate), but what is the best strategy for the hard-to-reach cases? I've proposed a solution that tries to estimate the best time to call using the accruing data.
I know other algorithms might explore other options more quickly. For instance, choosing the window with the highest upper bound on a confidence interval. It might be interesting to try these approaches, particularly for studies that place limits on the number of calls that can be made. The lower the limit, the more exploration may pay off.
I know other algorithms might explore other options more quickly. For instance, choosing the window with the highest upper bound on a confidence interval. It might be interesting to try these approaches, particularly for studies that place limits on the number of calls that can be made. The lower the limit, the more exploration may pay off.
Comments
Post a Comment