Skip to main content

Use of Prior Data in Estimation of Daily Propensity Models

I'm working on a paper on this topic. One of the things that I've been looking at is accuracy of predictions from models that use data during the field period. I think of this as a missing data problem. The daily models can yield different estimates that are biased. For example, estimates based on today might overestimate the number of interviews tomorrow. This can happen if my estimate of the number of interviews to expect on the third call is based on a select set of cases that responded more easily (compared to the cases that haven't received a third call).

One of the examples in the paper comes from contact propensity models I did for a monthly  telephone survey a few years ago. Since it is monthly, I could use data from prior months. Getting the right set of prior data (or, in a Bayesian perspective, priors) is important. I found that the prior months data had a contact rate of 9.4%. The current month had contact rate of 10.9%, but my estimates for the current month were below that due to the weight of the prior data. Ouch.

I'm thinking that the Bayesian setup for this problem will actually work much better. I can calibrate the priors such that at a critical tipping point, the current data will play a greater role.

Comments

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...