Skip to main content

Identifying all the active components of the design...

I've been reading papers on email prenotification and reminders. They are very interesting. There are usually several important features for these emails: how many are sent, the lag between messages, the subject line, the content of the email (length etc.), the placement of the URL, etc.

A full factorial design with all these factors is nearly impossible. So folks do the best they can and focus on a few of these features. I've been looking at papers on how many messages were sent, but I find that the lag time between message also varies a lot. It's hard to know which of these dimensions is the "active" component. It could be either, both, and may even be synergies (aka "interactions") between the two (and between other dimensions of the design as well).

Linda Collins and colleagues talk about methods for identifying the "active components" of the treatments in these complex situations. Given the complexity of these designs, with a large number of design features,  the fractional factorial designs she describes may be helpful. Further, it might be useful to think of each experiment as a link in a long chain of experimentation (see here). The trick is to design each "link" such that we explore each of the potential design features and any possible interactions with other design features.

Comments

  1. Hi James, I saw some recent experiments Nancy Bates and colleagues did at the Census Bureau at the nonresponse workshop. She found that none of the things she tested (subject line, content of message) affected response. I think there was one condition were people were more likely to view the survey, but it did not result in more complete responses. We need more experiments on e-mail invitations, as web surveys rely on them. Also, I think that e-mail invitations don't work the same as paper ones. E-mail is much shorter and faster.

    ReplyDelete
  2. I'm reviewing this literature because I am writing up the results of an experiment with email reminders. We didn't do anything with the time between reminders. Missed an opportunity. I'm trying to do something on the time between reminders for a study we are beginning next month.

    I agree, email is different.

    ReplyDelete

Post a Comment

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...