Skip to main content

Mixed-Mode Surveys: Nonresponse and Measurement Errors

I've been away from the blog for a while, but I'm back. One of the things that I did during my hiatus from the blog was to read papers on mixed-mode surveys. In most of these surveys, there are nonresponse biases and measurement biases that vary across the modes. These errors are almost always confounded. An important exception is Olson's paper. In that paper, she had gold standard data that allowed her to look at both error sources. Absent those gold standard data, there are limits on what can be done.

I read a number of interesting papers, but my main conclusion was that we need to make some assumptions in order to motivate any analysis. For example, one approach is to build nonresponse adjustments for each of the modes, and then argue that any differences remaining are measurement biases. Without such an assumption, not much can be said about either error source. Experimental designs certainly strengthen these assumptions, but do not completely unconfound the sources of error.

Having said that, gold standard studies, like Olson's, are an important step to test the validity of these kinds of assumptions. It seems that more such studies, focused on disentangling at least two error sources, would be very useful.




Comments

  1. I can recommend the work of my colleague Jorre Vannieuwenhuyze. He laid out several methods to disentangle such errors. http://scholar.google.nl/citations?user=ekOuDiwAAAAJ&hl=nl

    ReplyDelete
  2. Thanks! I'm familiar with his work. My point is that we need some assumptions to motivate any such method. There isn't any magic available!

    ReplyDelete

Post a Comment

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...