Skip to main content

Is the "long survey" dead?

A colleague sent me a link to a blog arguing that the "long survey" is dead. The blog takes the point of view that anything over 20 minutes is long. There's also a link to another blog that presents data from survey monkey surveys showing that the longer the questionnaire, the less time that is spent on each question. They don't really control for question length, etc. But it's still suggestive.

In my world 20 minutes is still a short survey. But the point is still taken. There has been some research on the effect of survey length (announced) on response rates. There probably is need for more.

Still, it might be time to start thinking of alternatives to improve response to long surveys. The most common is to offer a higher incentive, and thereby counteract the burden of the longer survey. Another alternative is to shorten the survey. This doesn't work if your questions are the ones getting tossed. Of course, substituting big data for elements of surveys is another option that is being explored.

Matrix sampling is another useful approach that is little used. It seems like you could do a power analysis for each item, each scale, each model using data from a survey and then subsample content that is overpowered. That takes a lot of work -- by central office staff -- but it might save more respondent (and interviewer) time than it costs.

Another option is to split up interview sessions across time and modes. This seems like it will become a more attractive design. A series of short surveys, completed over some amount of time.

It's probably worth exploring all of these options.


Comments

  1. This comment has been removed by the author.

    ReplyDelete
  2. Hi James. The "old" surveys - face-to-face surveys of an hour or more - will stay, perhaps fewer than before. It is self-administered surveys which are evolving due to the nature of how we communicate online and on our mobiles. I think your last suggestion is very natural. Most young people may check their e-mail or facebook several times daily. A "panel survey" that asks people 1 or 2 questions several times a day for a short period might really work. Am not sure it has ever been tried, apart from time use surveys.

    ReplyDelete

Post a Comment

Popular posts from this blog

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

"Responsive Design" and "Adaptive Design"

My dissertation was entitled "Adaptive Survey Design to Reduce Nonresponse Bias." I had been working for several years on "responsive designs" before that. As I was preparing my dissertation, I really saw "adaptive" design as a subset of responsive design. Since then, I've seen both terms used in different places. As both terms are relatively new, there is likely to be confusion about the meanings. I thought I might offer my understanding of the terms, for what it's worth. The term "responsive design" was developed by Groves and Heeringa (2006) . They coined the term, so I think their definition is the one that should be used. They defined "responsive design" in the following way: 1. Preidentify a set of design features that affect cost and error tradeoffs. 2. Identify indicators for these costs and errors. Monitor these during data collection. 3. Alter the design features based on pre-identified decision rules based on ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...