Skip to main content

What is the right periodicity?

It seems that intensive measurement is on the rise. There are a number of different kinds of things that are difficult to recall sufficiently over longer periods of time where it might be preferred to ask the question more frequently with a shorter reference period. For example, the number of alcoholic drinks consumed by day. More accurate measurements might be achieved if the questions was asked daily about the previous 24 hour period.

But what is the right period of time? And how do you determine that? This might be an interesting question. The studies I've seen tend to guess at what the correct periodicity is. I think it's probably the case that it would require some experimentation to determine that, including experimentation in the lab.

There are a couple of interesting wrinkles to this problem.

1. How do you set the periodicity when you measure several things that might have different periodicity? Ask the questions at the most frequent periodicity?

2. How does nonresponse/attrition fit into this? If some people will only respond at a certain rate, what should you do? Is it better to force the issue with them, i.e. make an ultimatum that they participate at the rate we desire or not at all; or better to allow them to participate at their preferred rate?

I'm sure the answers vary across the substantive areas of interest. But it does seem like an interesting set of problems in the evolving world of survey research.

Comments

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...