Skip to main content

Survey Modes and Recruitment

I've been struggling with the concept of "mode preference." It's a term we use to describe the idea that respondents might have preferences for a mode and that if we can identify or predict those preferences, then we can design a better survey (i.e. by giving people their preferred mode).

In practice, I worry that people don't actually prefer modes. If you ask people what mode they might prefer, they usually say the mode in which the question is asked. In other settings, the response to that sort of question is only weakly predictive of actual behavior.

I'm not sure the distinction between stated and revealed preferences is going to advance the discussion much either. The problem is that the language builds in an assumption that people actually have a preference. Most people don't think about survey modes. Most don't consider modes abstractly in the way methodologists might. In fact, these choices are likely probabilistic functions that hinge on the characteristics of survey (contact mode, etc.) and unobserved characteristics of the sampled person (e.g. are they busy when they get the request). Is it a preference if one day I like and the next I don't? That might be a bit of hyperbole, but I don't believe that most people actually have stable mode preferences.

For me, the interesting thing is to identify the probability of response under different modes for subgroups in the population. That way, we can trade off errors and costs in order optimize surveys. Further, mixed modes might be a natural fit if we acknowledge that unobserved characteristics are influencing the decision to participate. I might do a web survey this month, but next month it would be easier to catch me by phone. My schedule changes in ways that the survey organization can't observe.

An interesting question might be, what characteristics can we observe or in a panel survey ask about in wave 1, that help us predict participation rates under different modes? I'm not sure what those might be, but interesting to explore.
 

Comments

Post a Comment

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...