Skip to main content

Predictions of Nonresponse Bias

One issue that we have been discussing is indicators for the risk of nonresponse bias. There are some indicators that use observed information (i.e. largely sampling frame data) to determine whether respondents and nonrespondents are similar. The R-Indicator is an example of this type of indicator. It's not the only one. There are several sample balance indicators. There is an implicit model that the observed characteristics are related to the survey data and controlling for them will, therefore, also control the potential for nonresponse bias.

Another indicator uses the observed data, including the observed survey data, and a model to fill in the missing survey data. The goal here is to predict whether nonresponse bias is likely to occur. Here, the model is explicit.

An issue that impacts either of these approaches is that if you are able to predict the survey variables with the sampling frame data, then why bother addressing imbalances on them during data collection? One answer is that, empirically, it does lead to reductions in bias.

I do think there is an opportunity to approach this issue in another way. That is, could we attack the model uncertainty? Could we investigate regions of the covariate space where the predictions are less good, i.e. more uncertain? I tried to use regression diagnostics in this way. Here, the model plays an important role. And this approach might be sensitive to model selection. Still, it might be good to know more about the conditions under which this approach can be useful.


Comments

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...