Skip to main content

Presenting Results: Adaptive Design for Telephone Surveys

I'll be presenting results from the adaptive call scheduling experiment on Monday, November 2nd at the FCSM Research Conference. The results were promising, at least for the calls governed by the experimental protocol. The following table summarizes the results:


The next step is to extend the experimental protocol to the calls that were not involved with the experiment (mainly refusal conversion calls), and to attempt this with a face-to-face survey.

Comments

  1. Did the experimental scheduling lead to more call attempts (as I doubt you can force the call scheduler to keep the cases from the two conditions to be delivered proportionally)? It would be interesting to see the number of interviews too and the actual prediction & implementation, but I won't be at FCSM... Very interesting, James.

    ReplyDelete
  2. We had the scheduler deliver cases from the control and experimental group in an interwoven fashion. It would take 5 cases from each group and put them at the top of the sort, repeating this procedure until the entire sample was sorted.

    Of course, the protocol only applies to cases that don't have an appointment, weren't a return call on a busy signal, etc.

    We did run into a situation where we finished the experimental group, but the control group required more effort. So things got "out of whack" at the end of the field period.

    ReplyDelete

Post a Comment

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...