Skip to main content

What would a randomized call timing experiment look like?

It's one thing to compare different call scheduling algorithms. You can compare two algorithms and measure the performance using whatever metrics you want to compare (efficiency, response rate, survey outcome variables).

But what about comparing estimated contact propensities? There is an assumption often employed that these calls are randomly placed. This assumption allows us to predict what would happen under a diverse set of strategies -- e.g. placing calls at different times.

Still, this had me wondering what a really randomized experiment would look like. The experiment would be best randomized sequentially as this can result in more efficient allocation. We'd then want to randomize each "important" aspect of the next treatment. This is where it gets messy. Here are two of these features:

1. Timing. The question is, how to define this. We can define it using "call windows." But even the creation of these windows requires assumptions... and tradeoffs. The key assumption about a window is that contact probabilities within any window are homogenous. We can make very wide windows (i.e. windows with big chunks of time). These windows will have more data in each window. But the assumptions that contact probabilities are homogenous within any window seems plausible. If we make narrow windows, then the homogeneity assumption is more plausible. But we have less data in each window. Imagine estimating contact probabilities across 24*7=168 windows, one for each hour of the week!

2. Lag. How much time between each call? Most call centers and field operations don't do a great job controlling this dimension. Some cases may have huge lags. It may be hard to explain way. For some reason, they fall to the "bottom of the pile" and don't get called very frequently. Again, what are the appropriate lags?

So, small studies have very little ability to estimate a large number of windows and/or a large number of lags. Let alone constrain production to true randomization of these features. Still, for the sake of methods research, it might be fun to try this.

Comments

Popular posts from this blog

Assessment of Maching Learning Classifiers

I heard another interesting episode of the Data Skeptic podcast . They were discussing how a classifier could be assessed (episode 121). Many machine learning models are so complex that a human being can't really interpret the meaning of the model. This can lead to problems. They gave an example of a problem where they had a bunch of posts from two discussion boards. One was atheist and the other board was composed of Christians. They tried to classify each post as being from one or the other board. There was one poster who posted heavily on the Christian board. His name was Keith. Sadly, the model learned that if the person who was posting was named Keith, then they were Christian. The problem is that this isn't very useful for prediction. It's an artifact of the input data. Even cross-validation would eliminate this problem. A human being can see the issue, but a model can't. In any event, the proposed solution was to build interpretable models in local areas of t...

Tailoring vs. Targeting

One of the chapters in a recent book on surveying hard-to-reach populations looks at "targeting and tailoring" survey designs. The chapter references this paper on the use of the terms among those who design health communication. I thought the article was an interesting one. They start by saying that "one way to classify message strategies like tailoring is by the level of specificity with which characteristics of the target audience are reflected in the the communication." That made sense. There is likely a continuum of specificity ranging from complete non-differentiation across units to nearly individualized. But then the authors break that continuum and try to define a "fundamental" difference between tailoring and targeting. They say targeting is for some subgroup while tailoring is to the characteristics of the individual. That sounds good, but at least for surveys, I'm not sure the distinction holds. In survey design, what would constitute ...

What is Data Quality, and How to Enhance it in Research

  We often talk about “data quality” or “data integrity” when we are discussing the collection or analysis of one type of data or another. Yet, the definition of these terms might be unclear, or they may vary across different contexts. In any event, the terms are somewhat abstract -- which can make it difficult, in practice, to improve. That is, we need to know what we are describing with those terms, before we can improve them. Over the last two years, we have been developing a course on   Total Data Quality , soon to be available on Coursera. We start from an error classification scheme adopted by survey methodology many years ago. Known as the “Total Survey Error” perspective, it focuses on the classification of errors into measurement and representation dimensions. One goal of our course is to expand this classification scheme from survey data to other types of data. The figure shows the classification scheme as we have modified it to include both survey data and organic f...